Question of November

Solutions

5 December, 2014

Solution of the Question 1
Let K be the set of dictinct numbers of intersections.

$$
K=\left\{a_{1}, a_{2}, \ldots, a_{k}\right\}
$$

Without loss of generality, we can assume $a_{1}<a_{2}<\ldots<a_{k}$. A red line may not be intersect a blue line and may intersect all blue lines. Thus, we can say $0 \leq a_{1}$ and $a_{k} \leq l$. Since there are k distinct numbers of intersection, we can say $k \leq l+1$. Similarly, if we make the same assumption for blue lines, we can easily deduct $l \leq k+1$. If we solve the equations

$$
\begin{aligned}
& k \leq l+1 \\
& l \leq k+1
\end{aligned}
$$

together, we have $|k-l| \leq 1$.
Solution of the Question 2
Let g_{n}, r_{n}, b_{n} be the numbers of the green, red and blue lizards after two lizards with different colours randomly came together n times, respectively. After $n+1$ th move, there are 3 possibility :

$$
\begin{aligned}
& \left\{g_{n+1}, r_{n+1}, b_{n+1}\right\}=\left\{g_{n}+2, r_{n}-1, b_{n}-1\right\} \\
& \left\{g_{n+1}, r_{n+1}, b_{n+1}\right\}=\left\{g_{n}-1, r_{n}+2, b_{n}-1\right\} \\
& \left\{g_{n+1}, r_{n+1}, b_{n+1}\right\}=\left\{g_{n}-1, r_{n}-1, b_{n}+2\right\} .
\end{aligned}
$$

In all cases, the difference between lizards with different colour doesn't change in $(\bmod 3)$. Since $\left\{g_{0}, r_{0}, b_{0}\right\}=\{13,15,17\}$, it is not possible to make all lizards green, red or blue.

